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LETTER TO THE EDITOR 

Enhancing the learning of a finite number of patterns in neural 
networks 

J F Fontanari and R Koberle 
Departamento de Fisica e Ci&ncia dos Materials, lnstituto de Fisica e Quimica de Slo  
Carlos, Universidade de Slo  Paulo, Caixa Postal 369, 13.560 Si0 Carlos SP, Brazil 

Received 6 October 1987 

Abstract. We propose a mechanism to enhance the learning of an arbitrary but finite 
number of patterns (marked patterns) without damaging the ability of the network to 
retrieve the rest of the patterns. We find that the process of forgetting the marked patterns 
may become continuous, presenting then an unusual behaviour for symmetric neural 
networks. 

Neural networks with symmetric quadratic interactions have recently become fashion- 
able as models for distributed content-addressable memories. If the states of the neuron 
are represented by a spin variable Si, which may assume the values S, = + 1  (active) 
or Si=-1 (passive) the neural network may be viewed as a statistical mechanical 
system governed by the Hamiltonian (Hopfield 1982): 

H = - J&S,. ( 1 )  

Storage o fp  input patterns {ef = *l}, p = 1,  . . . , p ,  is achieved implementing Hebb’s 
rule as 

It is assumed that the [ f  are random independent quenched variables and that the 
number of memorised patterns (p)  is proportional to N :  

p = aN. (3) 
The model described above is able to retrieve or recognise the memorised patterns 

for a S a, = 0.14 with an error smaller than 1.5% (Amit et a1 1985, 1987, Kinzel 1985). 
In this letter we address the problem of enhancing the learning of a finite subset 

of memories { t f ,  p = 1 , .  . . , r } .  Our motivation to approach this problem comes from 
biology: biosystems cannot forget information essential for survival. Therefore we must 
modify the model in such a way that even if the network is overloaded (a > a,) it will 
recognise some special patterns. 

Enhancing the learning of r memorised patterns (marked patterns) can be achieved 
by coupling them to an external field (Amit et a1 1987). However, this approach presents 
some troubles: the improvement in the retrieval of a marked pattern may preclude the 
retrieval of all the rest of the memorised patterns. Moreover the efficiency of this 
mechanism for enhanced learning decreases as the number of marked patterns 
increases: for r > 5 this mechanism becomes useless. 
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To enhance the learning of r patterns we rewrite the learning rule (2) as 

with y s l .  
Similar modifications of Hebb’s rule have been considered recently (Mezard et al 

1986, Nadal et al 1986) in order to avoid overloading and allowing the system to store 
recent information by forgetting old memoriest. Our motivation is different, since we 
want to retrieve a certain set of memories without degrading the rest. 

In the following we will compute the retrieval qualities of the marked and unmarked 
patterns. We use the replica method to evaluate the quenched free energy 

( 5 )  
1 -pf== lim lim - [ (Z ” ) -  11 

n-m ~ - . m  Nn 

where 

Employing standard manipulations (Amit et al 1985) we express the quenched free 

(a) the macroscopic overlaps with r marked patterns 
energy in terms of the following order parameters: 

( 7 )  

(b) the macroscopic overlaps with s - r unmarked patterns, s being finite as N + 00, 

(8) 

(c) the total mean square of the random overlaps with p - s  patterns 

(d) the Edwards-Anderson order parameter 

Here ( )T stands for the thermal average and ( )5 for the average of the quenched 

The free energy per neuron is then given by 
variables (5’). 

f = ” 2 + ’  2 2 y n 2 + f a p y z i ( 1  -q)-p-’((log(2 cosh(pE)))) ( 1 1 )  

E = ( ~ r y ~ G ) ” ~ z +  m - g+ yn 6 (12) 

where 

t Mezard er al (1986) consider the learning rule J , , = ( l / N ) T ~ A ( ~ / N ) ~ ~ S :  where the function A ( p )  is 
suitably normalised. Since our rule is stationary, we relax the normalisation condition as P + CO, so as to 
obtain 11(@) = constant > 0. 
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and (( )) indicates the average over 5” ( p  < s) and over a Gaussian variable z with 
zero mean and unit variance. 

The values of the order parameters are given by the saddle-point equations: 

m” =(([” tanh(PS))) (13a)  

n” =(([” tanh(pE))) (13b) 

q = ((tanh2(PE))) (13c) 

i = q / [ l - P Y ( l - q ) l * .  (13d)  

p = 1 , .  . . , r 

p = r + l , .  . . , s 

We shall only study the zero temperature limit of these equations. Firstly we shall 
examine solutions with a macroscopic overlap with the single marked pattern { [ t } :  

m” = ma,,, (14a)  

n” = O  p = r + l , .  . . , s. (14b) 
As the four equations (13a-d)  can be reduced to one equation for the 

variable y = m ( 2 a y ’ ~ j ) - ~ ’ ~  

y y  = erf(y)[(2a)1/2+2T1’2e-~2~-1.  (15) 
For y<< 1 this equation may be expanded yielding 

- ( 0 )  / 

/‘ 
m = O  / 

Therefore we obtain a continuous transition from a retrieval to a spin-glass phase 

(17) a = (2/ T ) (  y-I - 1)’ y > 3 .  

aT= 8 / ~  y;’ = 3 (18) 

for 
- 1  

This goes over to a discontinuous transition at the tricritical point 

as shown in figure l ( a ) .  
Although the retrieval quality of the marked patterns at a = a,(y)  decreases and 

goes to zero as y-I increases (figure l ( b ) )  it is greatly improved when we keep a fixed 
and increase y-I as shown in figure 2. 

Figure 1. ( a )  Curve of a t . ’ 2 ( y - ‘ )  below which the marked retrieval states appear. The 
broken curve represents a continuous transition while the full curve corresponds to a 
discontinuous transition. ( b )  The retrieval quality of the marked retrieval states along the 
curve of (a) .  
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Figure 2. The retrieval quality of the marked retrieval states against a i l 2  for y-’ = 1.25, 
2.50, 3.33 and 5.00. Notice the improvement of m for a fixed as y - l  increases. 

It should be emphasised that the increase of a,( y )  does not mean any improvement 
in the network’s storage capacity. It means that it is still possible to retrieve any one 
of the r marked patterns when there are p = a , ( y )N  unmarked patterns stored in the 
network. Of course, these patterns cannot be retrieved since a,( y )  > a,( 1). 

For y-’  > 3 the process of forgetting the marked patterns is continuous. The main 
advantage of smoothly degrading memories is the possibility of implementing some 
control mechanism to detect this process. The system then has a chance to avoid the 
dangerous region where even the marked patterns are not retrievable. 

We shall now look at the solutions having macroscopic overlap with the single 
unmarked pattern { (r}: 

m ” = O  p = 1 , .  . . )  r 

The equation analogous to (15) is 

x = erf(.~)[(2a)”2+2.rr-”2 (20) 

where x = n(2aq‘)-’I2.  
Therefore we get a discontinuous transition from a retrieval to a spin-glass phase 

for a,=0.138 with n(aJ =0.97 independently of the value of y. 
In conclusion, this letter presents a mechanism for enhancing the learning of an 

arbitrary but finite number of patterns without damaging the ability of the network to 
retrieve the rest of the patterns. 

The research of RK is partially supported by CNPq and JFF holds a FAPESP 
fellowship. 

Nore added in p r m j  The referee has brought to our attention the work of S Shinomoto (1987 Biol. Cybern. 
57 197) where similar issues are addressed. 
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